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C H A P T E R3 Atomic Physics
3.1 Atomic Spectra of Gases 
All objects emit thermal radiation characterized by a continuous
distribution of wavelengths. In sharp contrast to this continuous
distribution spectrum is the discrete line spectrum observed
when a low pressure gas undergoes an electric discharge.
(Electric discharge occurs when the gas is subject to a potential
difference that creates an electric field greater than the dielectric
strength of the gas.) Observation and analysis of these spectral
lines is called emission spectroscopy.

When the light from a gas discharge is examined using a
spectrometer, it is found to consist of a few bright lines of color
on a generally dark background. This discrete line spectrum
contrasts sharply with the continuous rainbow of colors seen
when a glowing solid is viewed through the same instrument.
Figure 3.1a shows that the wavelengths contained in a given line
spectrum are characteristic of the element emitting the light. The
simplest line spectrum is that for atomic hydrogen, and we
describe this spectrum in detail. Because no two elements have
the same line spectrum, this phenomenon represents a practical
and sensitive technique for identifying the elements present in
unknown samples.

Another form of spectroscopy very useful in analyzing
substances is absorption spectroscopy. An absorption spectrum
is obtained by passing white light from a continuous source
through a gas or a dilute solution of the element being analyzed.



The absorption spectrum consists of a series of dark lines
superimposed on the continuous spectrum of the light source as
shown in Figure 3.1b for atomic hydrogen.

The absorption spectrum of an element has many practical
applications. For example, the continuous spectrum of radiation
emitted by the Sun must pass through the cooler gases of the
solar atmosphere. The various absorption lines observed in the
solar spectrum have been used to identify elements in the solar
atmosphere. In early studies of the solar spectrum,
experimenters found some lines that did not correspond to any
known element. A new element had been discovered! The new
element was named helium, after the Greek word for Sun, helios.
Helium was subsequently isolated from subterranean gas on the
Earth.

Using this technique, scientists have examined the light
from stars other than our Sun and have never detected elements
other than those present on the Earth. Absorption spectroscopy
has also been useful in analyzing heavy metal contamination of
the food chain. For example, the first determination of high levels
of mercury in tuna was made with the use of atomic absorption
spectroscopy.
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Figure 3.1 (a) Emission line spectra for hydrogen, mercury, and neon. 
(b) The absorption spectrum for hydrogen. Notice that the dark 

absorption lines occur at the same wavelengths as the hydrogen 
emission lines in (a).7 

7 (K. W. Whitten, R. E. Davis, M. L. Peck, and G. G. Stanley, General
Chemistry, 7th ed., Belmont, CA, Brooks/Cole, 2004.) 



In 1885, a Swiss schoolteacher, Johann Jacob Balmer
(1825–1898), found an empirical equation that correctly
predicted the wavelengths of four visible emission lines of
hydrogen: H (red), H (bluegreen), H (blue violet), and H
(violet). Figure 3.2 shows these and other lines (in the ultraviolet)
in the emission spectrum of hydrogen. The four visible lines occur
at the wavelengths 656.3 nm, 486.1 nm, 434.1 nm, and 410.2 nm.
The complete set of lines is called the Balmer series. The
wavelengths of these lines can be described by the following
equation, which is a modification made by Johannes Rydberg
(1854–1919) of Balmer’s original equation:
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where RH is a constant now called the Rydberg constant with a
value of 1.0973732 x 107 m–1. The integer values of n from 3 to 6
give the four visible lines from 656.3 nm (red) down to 410.2 nm
(violet). Equation 3.1 also describes the ultraviolet spectral lines
in the Balmer series if n is carried out beyond n = 6. The series
limit is the shortest wavelength in the series and

Figure 3.2 The Balmer series of spectral lines 
for atomic hydrogen, with several lines 
marked with the wavelength in nanometers.



corresponds to n , with a wavelength of 364.6 nm as in Figure
3.2. The measured spectral lines agree with the empirical
equation, Equation 3.1, to within 0.1%. 
Other lines in the spectrum of hydrogen were found following
Balmer’s discovery. These spectra are called the Lyman, Paschen,
and Brackett series after their discoverers. The wavelengths of
the lines in these series can be calculated through the use of the
following empirical equations:
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3.2 Early Models of the Atom 
The model of the atom in the days of Newton was a tiny, hard,
indestructible sphere. Although this model provided a good basis
for the kinetic theory of gases, new models had to be devised
when experiments revealed the electrical nature of atoms. In
1897, J. J. Thomson established the charge to mass ratio for
electrons.

The following year, he suggested a model that describes
the atom as a region in which positive charge is spread out in
space with electrons embedded throughout the region, much like
the seeds in a watermelon or raisins in thick pudding (Fig. 3.3).
The atom as a whole would then be electrically neutral.
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In 1911, Ernest Rutherford (1871–1937) and his students
Hans Geiger and Ernest Marsden performed a critical experiment
that showed that Thomson’s model could not be correct. In this
experiment, a beam of positively charged alpha particles (helium
nuclei) was projected into a thin
metallic foil such as the target in
Figure 3.4a. Most of the
particles passed through the foil
as if it were empty space, but
some of the results of the
experiment were astounding.
Many of the particles deflected
from their original direction of
travel were scattered through
large angles. Some particles
were even deflected backward,
completely reversing their
direction of travel!

Figure 3.3 Thomson’s model of the atom.

Rutherford explained his astonishing results by developing
a new atomic model, one that assumed the positive charge in the
atom was concentrated in a region that was small relative to the
size of the atom. He called this concentration of positive charge
the nucleus of the atom. Any electrons belonging to the atom
were assumed to be in the relatively large volume outside the
nucleus. To explain why these electrons were not pulled into the



Figure 3.4 (a) Rutherford’s technique for 
observing the scattering of alpha particles 
from a thin foil target. The source is a 
naturally occurring radioactive substance, 
such as radium. (b) Rutherford’s planetary 
model of the atom. 

nucleus by the attractive electric force,
Rutherford modeled them as moving in
orbits around the nucleus in the samemanner as the planets orbit
the Sun (Fig. 3.4b). For this reason, this model is often referred to
as the planetary model of the atom. 

Two basic difficulties exist with Rutherford’s planetary
model. As we saw in Section 3.1, an atom emits (and absorbs)
certain characteristic frequencies of electromagnetic radiation
and no others, but the Rutherford model cannot explain this
phenomenon. A second difficulty is that Rutherford’s electrons
are described by the particle in uniform circular motion model;
they have a centripetal acceleration. According to Maxwell’s
theory of electromagnetism, centripetally accelerated charges
revolving with frequency f should radiate electromagnetic waves
of frequency f.
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As energy leaves the
system, the radius of the
electron’s orbit steadily
decreases (Fig. 3.5). Therefore,
as the electron moves closer to
the nucleus, the angular speed
of the electron will increase, just
like the spinning skater. This
process leads to an ever
increasing frequency of emitted
radiation and an ultimate
collapse of the atom as the
electron plunges into the
nucleus.

Figure 3.5 The classical model 
of the nuclear atom predicts 
that the atom decays. 

3.3 Bohr’s Model of the Hydrogen Atom
Niels Bohr in 1913 combined ideas from Planck’s original
quantum theory, Einstein’s concept of the photon, Rutherford’s
planetary model of the atom, and Newtonian mechanics to arrive
at a semiclassical structural model based on some revolutionary
ideas. The structural model of the Bohr theory as it applies to the
hydrogen atom has the following properties:

1. Physical components:



The electron moves in circular orbits around the proton
under the influence of
the electric force of
attraction as shown in
Figure 3.6.

Figure 3.6 Diagram 
representing Bohr’s 
model of the hydrogen 
atom.  

2. Behavior of the
components:

(a) Only certain electron
orbits are stable. When
in one of these stationary states, as Bohr called them, the
electron does not emit energy in the form of radiation,
even though it is accelerating. Hence, the total energy of
the atom remains constant and classical mechanics can be
used to describe the electron’s motion. Bohr’s model
claims that the centripetally accelerated electron does not
continuously emit radiation, losing energy and eventually
spiraling into the nucleus, as predicted by classical physics
in the form of Rutherford’s planetary model. 

(b) The atom emits radiation when the electron makes a
transition from a more energetic initial stationary state to
a lower energy stationary state. This transition cannot be
visualized or treated classically. In particular, the frequency
f of the photon emitted in the transition is related to the
change in the atom’s energy and is not equal to the



Atomic Physics

frequency of the electron’s orbital motion. The frequency
of the emitted radiation is found from the energy
conservation expression

Ei Ef = hf 3.5
where Ei is the energy of the initial state, Ef is the energy of
the final state, and Ei > Ef . In addition, energy of an incident
photon can be absorbed by the atom, but only if the
photon has an energy that exactly matches the difference
in energy between an allowed state of the atom and a
higher energy state. Upon absorption, the photon
disappears and the atom makes a transition to the higher
energy state.

(c) The size of an allowed electron orbit is determined by a
condition imposed on the electron’s orbital angular
momentum: the allowed orbits are those for which the
electron’s orbital angular momentum about the nucleus is
quantized and equal to an integral multiple of = h/2 ,

mevr = n n = 1, 2, 3, … 3.6
where me is the electron mass, v is the electron’s speed in
its orbit, and r is the orbital radius.
The electric potential energy of the system shown in Figure

3.6 is given by Equation, U = keq1q2/r = kee2/r, where ke is the
Coulomb constant and the negative sign arises from the charge
e on the electron. Therefore, the total energy of the atom, which
consists of the electron’s kinetic energy and the system’s
potential energy, is
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The electron is modeled as a particle in uniform circular motion,
so the electric force kee2/r2 exerted on the electron must equal
the product of its mass and its centripetal acceleration (ac = v2/r):
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From Equation 3.8, we find that the kinetic energy of the electron
is

r
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Substituting this value of K into Equation 3.7 gives the following
expression for the total energy of the atom:
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Because the total energy is negative, which indicates a bound

electron–proton system, energy in the amount of reke 2/2 must
be added to the atom to remove the electron and make the total
energy of the system zero.

We can obtain an expression for r, the radius of the allowed
orbits, by solving Equation 3.6 for v2 and equating it to Equation
3.8:
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Equation 3.10 shows that the radii of the allowed orbits have
discrete values: they are quantized. The result is based on the
assumption that the electron can exist only in certain allowed
orbits determined by the integer n.

The orbit with the smallest radius, called the Bohr radius
a0, corresponds to n = 1 and has the value

Bohr radius nm 0529.02
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Substituting Equation 3.11 into Equation 3.10 gives a general
expression for the radius of any orbit in the hydrogen atom:
Radii of Bohr orbits in hydrogen

... 3, 2, ,1   nm) 0529.0(2
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Bohr’s theory predicts a value for the radius of a hydrogen

atom on the right order of magnitude, based on experimental
measurements. The first three Bohr orbits are shown to scale in
Figure 3.7.

The quantization of orbit radii leads to energy quantization.
Substituting rn = n2a0 into Equation 3.9 gives
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Inserting numerical values into this expression, we find that
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Only energies satisfying this
equation are permitted. The
lowest allowed energy level, the
ground state, has n = 1 and
energy E1 = 13.606 eV. The next
energy level, the first excited
state, has n = 2 and energy E2 =
E1/22 = 3.401 eV. Figure 3.8 is an
energy level diagram showing
the energies of these discrete
energy states and the
corresponding quantum
numbers n. The uppermost level
corresponds to n = (or r = )
and E = 0.

Figure 3.7 The first three circular 
orbits predicted by the Bohr model 
of the hydrogen atom. 

The energies of the hydrogen atom (Eq. 3.14) are inversely
proportional to n2, so their separation in energy becomes smaller
as n increases. The separation between energy levels approaches
zero as n approaches infinity and the energy approaches zero.

Zero energy represents the boundary between a bound
system of an electron and a proton and an unbound system. If the
energy of the atom is raised from that of the ground state to any
energy larger than zero, the atom is ionized. Theminimum energy
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required to ionize the atom in its ground state is called the
ionization energy. As can be seen from Figure 3.8, the ionization
energy for hydrogen in the ground state, based on Bohr’s
calculation, is 13.6 eV. This
finding constituted another
major achievement for the
Bohr theory because the
ionization energy for hydrogen
had already been measured to
be 13.6 eV.

Figure 3.8 An energy-level 
diagram for the hydrogen 
atom. Quantum numbers 
are given on the left, and 
energies (in electron volts) 
are given on the right. 
Vertical arrows represent 
the four lowest-energy 
transitions for each of the 
spectral series shown. 

Equations 3.5 and 3.13
can be used to calculate the
frequency of the photon emitted when the electron makes a
transition from an outer orbit to an inner orbit:
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Because the quantity measured experimentally is wavelength, it
is convenient to use c = f to express Equation 3.15 in terms of
wavelength:
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Remarkably, this expression, which is purely theoretical, is
identical to the general form of the empirical relationships
discovered by Balmer and Rydberg and given by Equations 3.1 to
3.4:
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provided the constant kee2/2a0hc is equal to the experimentally
determined Rydberg constant. Furthermore, Bohr showed that
all the spectral series for hydrogen have a natural interpretation
in his theory. The different series correspond to transitions to
different final states characterized by the quantum number nf .
Figure 3.8 shows the origin of these spectral series as transitions
between energy levels.
Bohr extended hismodel for hydrogen to other elements inwhich
all but one electron had been removed. These systems have the
same structure as the hydrogen atom except that the nuclear
charge is larger. Ionized elements such as He+, Li2+, and Be3+ were
suspected to exist in hot stellar atmospheres, where atomic
collisions frequently have enough energy to completely remove
one or more atomic electrons. Bohr showed that many
mysterious lines observed in the spectra of the Sun and several
other stars could not be due to hydrogen but were correctly
predicted by his theory if attributed to singly ionized helium. In
general, the number of protons in the nucleus of an atom is called
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the atomic number of the element and is given the symbol Z. To
describe a single electron orbiting a fixed nucleus of charge +Ze,
Bohr’s theory gives

Z
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Quick Quiz 3.1 A hydrogen atom is in its ground state. Incident on the 
atom is a photon having an energy of 10.5 eV. What is the result? (a)
The atom is excited to a higher allowed state. (b) The atom is ionized. 
(c) The photon passes by the atom without interaction. 

Quick Quiz 3.2 A hydrogen atom makes a transition from the n = 3 level 
to the n = 2 level. It then makes a transition from the n = 2 level to the 
n = 1 level. Which transition results in emission of the longer-
wavelength photon? (a) the first transition (b) the second transition (c)
neither transition because the wavelengths are the same for both

Example 3.1 Electronic Transitions in Hydrogen
(A) The electron in a hydrogen atom makes a transition from the n = 2 
energy level to the ground level (n = 1). Find the wavelength and 
frequency of the emitted photon. 
S O L U T I O N 

Use Equation 3.17 to obtain , with ni = 2 and nf = 1: 
 
 
 
 
 
 
 
 
 
to find the frequency of the photon 



(B) In interstellar space, highly excited hydrogen atoms called Rydberg 
atoms have been observed. Find the wavelength to which radio 
astronomers must tune to detect signals from electrons dropping from 
the n 5 273 level to the n = 272 level. 
S O L U T I O N 

Use Equation 3.17, this time with ni = 273 and nf = 272: 
 
 
 
Solve for : 
 

(C) What is the radius of the electron orbit for a Rydberg atom for 
which n = 273? 
S O L U T I O N 

Use Equation 3.12 to find the radius of the orbit: 
 

This radius is large enough that the atom is on the verge of becoming 
macroscopic! 

(D) How fast is the electron moving in a Rydberg atom for which n =
273? 
S O L U T I O N 

Solve Equation 3.8 for the electron’s speed: 

 

 

 

 

What if radiation from the Rydberg atom in part (B) is treated 
classically? What is the wavelength of radiation emitted by the atom in 
the n = 273 level? 

Answer Classically, the frequency of the emitted radiation is that of the 
rotation of the electron around the nucleus. 
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Calculate this frequency using the period defined in 
 
 
Substitute the radius and speed from parts (C) and (D):

 

Find the wavelength of the radiation from
 

 
This value is about 0.5% different from the wavelength calculated in 
part (B). As indicated in the discussion of Bohr’s correspondence 
principle, this difference becomes even smaller for higher values of n. 

3.4 The Quantum Model of the Hydrogen Atom 
In the preceding section, we described how the Bohr model views
the electron as a particle orbiting the nucleus in nonradiating,
quantized energy levels. This model combines both classical and
quantum concepts. Although the model demonstrates excellent
agreement with some experimental results, it cannot explain
others. These difficulties are removed when a full quantum
model involving the Schrödinger equation is used to describe the
hydrogen atom.

The formal procedure for solving the problem of the
hydrogen atom is to substitute the appropriate potential energy
function into the Schrödinger equation, find solutions to the
equation, and apply boundary conditions. The potential energy
function for the hydrogen atom is that due to the electrical
interaction between the electron and the proton:
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