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2 C H A P T E R

Coulomb’s Law and Electric 
Field Intensity

In this chapter, we introduce Coulomb’s electrostatic force law and then formulate 
this in a general way using field theory. The tools that will be developed can be 
used to solve any problem in which forces between static charges are to be evalu-

ated or to determine the electric field that is associated with any charge distribution. 
Initially, we will restrict the study to fields in vacuum or free space; this would apply 
to media such as air and other gases. Other materials are introduced in Chapter 5 and 
time-varying fields are introduced in Chapter 9. ■

2.1 THE EXPERIMENTAL LAW OF COULOMB
Records from at least 600 B.C. show evidence of the knowledge of static electricity. 
The Greeks were responsible for the term electricity, derived from their word for 
amber, and they spent many leisure hours rubbing a small piece of amber on their 
sleeves and observing how it would then attract pieces of fluff and stuff. However, 
their main interest lay in philosophy and logic, not in experimental science, and it 
was many centuries before the attracting effect was considered to be anything other 
than magic or a “life force.”

Dr. Gilbert, physician to Her Majesty the Queen of England, was the first to 
do any true experimental work with this effect, and in 1600 he stated that glass, 
sulfur, amber, and other materials, which he named, would “not only draw to 
themselves straws and chaff, but all metals, wood, leaves, stone, earths, even water 
and oil.”

Shortly thereafter, an officer in the French Army Engineers, Colonel Charles 
Coulomb, performed an elaborate series of experiments using a delicate torsion bal-
ance, invented by himself, to determine quantitatively the force exerted between two 
objects, each having a static charge of electricity. His published result is very similar 
to Newton’s gravitational law (discovered about a hundred years earlier). Coulomb 
stated that the force between two very small objects separated in a vacuum or free 
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space by a distance, which is large compared to their size, is proportional to the charge 
on each and inversely proportional to the square of the distance between them, or

F = k    Q  1    Q  2  ____
 R   2 

 

where Q1 and Q2 are the positive or negative quantities of charge, R is the separation, 
and k is a proportionality constant. If the International System of Units1 (SI) is used, 
Q is measured in coulombs (C), R is in meters (m), and the force should be newtons 
(N). This will be achieved if the constant of proportionality k is written as

k =   1 ____
4π  ϵ  0  

  

The new constant ϵ0 is called the permittivity of free space and has magnitude, mea-
sured in farads per meter (F/m),

  ϵ  0   = 8.854 ×  10   −12   =   ˙     1 _ 36π
    10   −9   F/m (1)

The quantity ϵ0 is not dimensionless, for Coulomb’s law shows that it has the 
label C2/N · m2. We will later define the farad and show that it has the dimensions 
C2/N · m; we have anticipated this definition by using the unit F/m in Eq. (1).

Coulomb’s law is now

 F =    Q  1    Q  2   _ 
4π  ϵ  0    R   2 

   (2)

The coulomb is an extremely large unit of charge, for the smallest known 
quantity of charge is that of the electron (negative) or proton (positive), given in SI 
units as 1.602 × 10−19 C; hence a negative charge of one coulomb represents about 
6 × 1018 electrons.2 Coulomb’s law shows that the force between two charges of one 
coulomb each, separated by one meter, is 9 × 109 N, or about one million tons. The 
electron has a rest mass of 9.109 × 10−31 kg and has a radius on the order of magni-
tude of 3.8 × 10−15 m. This does not mean that the electron is spherical, but it merely 
describes the size of the region in which a slowly moving electron has the greatest 
probability of being found. All other known charged particles, including the proton, 
have larger masses and larger radii, and they occupy a probabilistic volume larger 
than does the electron.

In order to write the vector form of (2), we need the additional fact (furnished 
also by Colonel Coulomb) that the force acts along the line joining the two charges 
and is repulsive if the charges are alike in sign or attractive if they are of opposite 
sign. Let the vector r1 locate Q1, whereas r2 locates Q2. Then the vector R12 = r2 − 
r1 represents the directed line segment from Q1 to Q2, as shown in Figure 2.1. The 

1 The International System of Units (an mks system) is described in Appendix B. Abbreviations for the 
units are given in Table B.1. Conversions to other systems of units are given in Table B.2, while the 
prefixes designating powers of ten in SI appear in Table B.3.
2 The charge and mass of an electron and other physical constants are tabulated in Table C.4 of Appendix C.
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vector F2 is the force on Q2 and is shown for the case where Q1 and Q2 have the same 
sign. The vector form of Coulomb’s law is

  F  2   =    Q  1    Q  2   ______ 
4π  ϵ  0    R  12  2  

    a  12    (3)

where a12 = a unit vector in the direction of R12, or

 a  12   =    R  12   ____  |    R  12   |     =    R  12   ___  R  12  
   =    r  2   −  r  1  _____

 |    r  2   −  r  1   |  (4)

Figure 2.1 If Q1 and Q2 have like 
signs, the vector force F2 on Q2 is in 
the same direction as the vector R12.

Q1

Q2R12

a12

F2
R12 = r2 – r1

r1

r2

Origin

EXAMPLE 2.1

We illustrate the use of the vector form of Coulomb’s law by locating a charge of 
Q1 = 3 × 10−4 C at M(1, 2, 3) and a charge of Q2 = −10−4 C at N(2, 0, 5) in a vacuum. 
We want to find the force exerted on Q2 by Q1.
Solution. We use (3) and (4) to obtain the vector force. The vector R12 is

 R  12   =  r  2   −  r  1   = (2 − 1 )  a  x   + (0 − 2 )  a  y   + (5 − 3 )  a  z   =  a  x   − 2  a  y   + 2  a  z  
leading to |R12| = 3, and the unit vector,  a  12   =   1 _ 3  ( a  x   − 2  a  y   + 2  a  z   ). Thus,

 F  2   =    3 ×  10   −4 (−  10   −4  )  ______________  
4π(1 / 36π )  10   −9  ×  3   2 

    ( a  x   − 2  a  y   + 2  a  z  ____________ 3  )
    

 =  −30  (    
 a  x   − 2  a  y   + 2  a  z    ____________ 3   )    N

The magnitude of the force is 30 N, and the direction is specified by the unit 
vector, which has been left in parentheses to display the magnitude of the force. The 
force on Q2 may also be considered as three component forces,

 F  2   = − 10  a  x   + 20  a  y   − 20  a  z  
The force expressed by Coulomb’s law is a mutual force, for each of the two charges 
experiences a force of the same magnitude, although of opposite direction. We might 
equally well have written

  F  1   = −  F  2   =    Q  1    Q  2   ______ 
4π  ϵ  0    R  12  2  

    a  21   = −    Q  1    Q  2   ______ 
4π  ϵ  0    R  12  2  

    a  12   (5)
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2.2 ELECTRIC FIELD INTENSITY
Here, we introduce the first of several field quantities that we will use throughout our study. 
The electric field intensity gives the magnitude and direction of electrostatic force that would 
be applied to a point charge of unit magnitude that resides in the field, and as a function of 
its location. Emphasized here is the notion of the force acting at a point, and as such, the 
electric field intensity, like all other field quantities we will encounter, is a point function. 
Forces on larger objects, or charge distributions, must be found by summing contributions 
at all points that make up the object by way of a superposition integral. Such procedures 
are used in every aspect of applied electromagnetics and are introduced in later sections. 

2.2.1 Electric Field Definition for a Point Charge

Consider a single point charge fixed in position, say Q1, and move a second charge 
slowly around. It will be found that there exists everywhere a force on this second 
charge; in other words, this second charge is displaying the existence of a force field 
that is associated with charge Q1. Call this second charge a test charge Qt. The force 
on it is given by Coulomb’s law, expressed by adapting Eq. (3):

 F  t   =    Q  1    Q  t   ______ 
4π  ϵ  0    R  1t  2  

    a  1t  

Writing this force as a force per unit charge gives the electric field intensity E1 aris-
ing from Q1:

  E  1   =    F  t   __  Q  1  
 =    Q  1   ______ 

4π  ϵ  0    R  1t  2  
    a  1t    (6)

E1 is interpreted as the vector force, arising from charge Q1, that acts on a unit posi-
tive test charge. More generally, we write the defining expression:

 E =    F  t   _  Q  t
   (7)

in which E, a vector function, is the electric field intensity evaluated at the test
charge location that arises from all other charges in the vicinity—meaning the elec-
tric field arising from the test charge itself is not included in E.

Coulomb’s law is linear, for if we multiply Q1 by a factor n, the force on Q2 is also 
multiplied by the same factor n. It is also true that the force on a charge in the pres-
ence of several other charges is the sum of the forces on that charge arising from each 
of the other charges acting alone.

D2.1. A charge QA = −20 μC is located at A(−6, 4, 7), and a charge QB =  
50 μC is at B(5, 8, −2) in free space. If distances are given in meters, find:  
(a) RAB; (b) RAB. Determine the vector force exerted on QA by QB if ϵ0 =  
(c) 10−9/(36π) F/m; (d) 8.854 × 10−12 F/m.

Ans. (a) 11ax + 4ay − 9az m; (b) 14.76 m; (c) 30.76ax + 11.184ay − 25.16az mN; 
(d ) 30.72ax + 11.169ay − 25.13az mN
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The units of E would be in force per unit charge (newtons per coulomb). Again 
anticipating a new dimensional quantity, the volt (V), having the label of joules per 
coulomb (J/C), or newton-meters per coulomb (N · m/C), we measure electric field 
intensity in the practical units of volts per meter (V/m).

Most of the subscripts in (6) are now removed, reserving the right to use them 
again any time there is a possibility of misunderstanding. The electric field of a sin-
gle point charge becomes:

 E =   Q _____ 
4π  ϵ  0    R   2 

    a  R    (8)

We remember that R is the magnitude of the vector R, the directed line segment 
from the point at which the point charge Q is located to the point at which E is 
desired, and aR is a unit vector in the R direction.3

We arbitrarily locate Q1 at the center of a spherical coordinate system. The unit 
vector aR then becomes the radial unit vector ar, and R is r. Hence

 E =    Q  1   _ 
4π  ϵ  0    r   2 

    a  r   (9)

The field has a single radial component, and its inverse-square-law relationship is 
quite obvious.

2.2.2 Fields Associated with Charges at General Locations

For a charge that is not at the origin of our coordinate system, the field no longer possess-
es spherical symmetry, and we might as well use rectangular coordinates. For a charge Q 
located at the source point r′ = x′ax + y′ay + z′az, as illustrated in Figure 2.2, the field at 
a general point r = xax + yay + zaz can be found by expressing R as r − r′:

E(r ) =    Q
 __________ 

4π ϵ0 |  r − r′ |  2
       r − r′ ______  |  r − r′ |     =    Q(r − r′)__________

4π ϵ0 |  r − r′ |  3
   

=    
Q [ (x − x′)ax + (y − y′) ay + (z − z′) az ]    ________________________________    
4π ϵ0 [ (x − x′)2 + (y − y′)2 + (z − z′)2 ]3/2  

  (10)

Earlier, we defined a vector field as a vector function of a position vector, and this is 
emphasized by letting E be symbolized in functional notation by E(r).

Because the coulomb forces are linear, the electric field intensity arising from 
two point charges, Q1 at r1 and Q2 at r2, is the sum of the forces on Qt caused by Q1 
and Q2 acting alone, or

E(r ) =    Q  1   ________  
4π  ϵ  0   |  r −  r  1     |     2     a  1   +    Q  2   ________  

4π  ϵ  0   |  r −  r  2     |     2     a  2  

where a1 and a2 are unit vectors in the direction of (r − r1) and (r − r2), respectively. 
The vectors r, r1, r2, r − r1, r − r2, a1, and a2 are shown in Figure 2.3.

3 We firmly intend to avoid confusing r and ar with R and aR. The first two refer specifically to the spherical 
coordinate system, whereas R and aR do not refer to any coordinate system—the choice is still available to us.
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Figure 2.2 The vector r′ locates the point 
charge Q, the vector r identifies the general 
point in space P(x, y, z), and the vector R 
from Q to P(x, y, z) is then R = r − r′.

Origin

r

E

P(x, y, z)

Q
(x', y', z')

r'

R = r – r'

Figure 2.3 The vector addition of the total electric 
field intensity at P due to Q1 and Q2 is made possible 
by the linearity of Coulomb’s law.

z

x

y

Q2

Q1 P

r2

r1

E2

a2

a1 E1

r –  r2

r –  r1

r

E(r)
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If more charges are added at other positions, the field arising from n point 
charges is

E(r ) =   ∑ 
m=1

  
n
       Q  m   ________  

4π  ϵ  0   |  r −  r  m     |     2     a  m   (11)

EXAMPLE 2.2

In order to illustrate the application of (11), we find E at P(1, 1, 1) caused by four 
identical 3-nC (nanocoulomb) charges located at P1(1, 1, 0), P2(−1, 1, 0), P3(−1, −1, 0), 
and P4(1, −1, 0), as shown in Figure 2.4.
Solution. We find that r = ax + ay + az, r1 = ax + ay, and thus r − r1 = az. The
magnitudes are: |r − r1| = 1, |r − r2| = √ 

__
 5  , |r − r3| = 3, and |r − r4| = √ 

__
 5  . Because

Q/4πϵ0 = 3 × 10−9/(4π × 8.854 × 10−12) = 26.96 V · m, we may now use (11) to obtain

E = 26.96  [     a  z   _ 1     1 _
 1   2

  +   2  a  x   +  a  z   _ 
 √ 

_
 5  
     1 ______ 

  (   √ 
_

 5    )     2 
   +   

2  a  x   + 2  a  y   +  a  z    ____________ 3     1 _ 
 3   2

   +   
2  a  y   +  a  z   _ 

 √ 
_

 5  
     1 ______ 

  (   √ 
_

 5    )     2 
   ]   

or
E = 6.82  a  x   + 6.82  a  y   + 32.8  a  z    V/m

D2.2. A charge of −0.3 μC is located at A(25, −30, 15) (in cm), and a second 
charge of 0.5 μC is at B(−10, 8, 12) cm. Find E at: (a) the origin; (b) P(15, 20, 
50) cm.

Ans. (a) 92.3ax − 77.6ay − 94.2az kV/m; (b) 11.9ax − 0.519ay + 12.4az kV/m

Figure 2.4 A symmetrical distribution of four identical 3-nC point 
charges produces a field at P, E = 6.82ax + 6.82ay + 32.8az V/m.

x

y

P1 (1, 1, 0)

P3  (–1, –1, 0) P2  (–1, 1, 0)

P4  (1, –1, 0)

r – r4
r – r1

r – r2

r – r3

P(1, 1, 1)

z
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2.3  FIELD ARISING FROM A CONTINUOUS 
VOLUME CHARGE DISTRIBUTION

If we now visualize a region of space filled with a tremendous number of charges 
separated by minute distances, we see that we can replace this distribution of very 
small particles with a smooth continuous distribution described by a volume charge
density, just as we describe water as having a density of 1 g/cm3 (gram per cubic cen-
timeter) even though it consists of atomic- and molecular-sized particles. This can 
be done only if we are uninterested in the small irregularities (or ripples) in the field 
as we move from electron to electron or if we care little that the mass of the water 
actually increases in small but finite steps as each new molecule is added.

This is really no limitation at all, because the end results for electrical engineers 
are almost always in terms of a current in a receiving antenna, a voltage in an elec-
tronic circuit, or a charge on a capacitor, or in general in terms of some large-scale 
macroscopic phenomenon. It is very seldom that we must know a current electron 
by electron.4

2.3.1 Volume Charge Density Definition

Volume charge density is denoted by ρv, having the units of coulombs per cubic 
meter (C/m3).

The small amount of charge ΔQ in a small volume Δv is

 ΔQ =  ρ  v   Δv  (12)

and ρv may be defined mathematically by using a limiting process on (12),

  ρ  v   =   lim  
Δv→0

     ΔQ_ 
Δv

   (13)

The total charge within some finite volume is obtained by integrating throughout that 
volume,

 Q =  ∫  vol    ρ  v  dv (14)

Only one integral sign is customarily indicated, but the differential dv signifies inte-
gration throughout a volume, and hence a triple integration.

D2.3. Evaluate the sums: (a)    ∑ 
m=0

  
5
      1 +  (− 1 )   m  ______ 

 m   2  + 1
  ; (b)    ∑ 

m=1
  

4
       (0.1 )   m  + 1 _______ 

 (4 +  m   2  )   1.5 
    

Ans. (a) 2.52; (b) 0.176

4 A study of the noise generated by electrons in semiconductors and resistors, however, requires just such 
an examination of the charge through statistical analysis.
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EXAMPLE 2.3

As an example of the evaluation of a volume integral, we find the total charge con-
tained in a 2-cm length of the electron beam shown in Figure 2.5.
Solution. From the illustration, we see that the charge density is

 ρ  v   = − 5 ×  10   −6   e   − 10   5 ρz    C/m   2 

The volume differential in cylindrical coordinates is given in Section 1.8; therefore,

Q =  ∫ 
 0.02

  
  0.04

     ∫ 
 0
  
  2π

     ∫ 
 0
  
  0.01

   −5 ×  10   −6   e   − 10   5 ρz  ρ dρ dϕ dz

We integrate first with respect to ϕ because it is so easy,

Q =  ∫ 
 0.02

  
  0.04

      ∫ 
 0
  
  0.01

   −  10   −5  π  e   − 10   5 ρz  ρ  dρ  dz

and then with respect to z, because this will simplify the last integration with respect 
to ρ,

Q =  ∫ 
 0
  
  0.01

       (    − 10−5 π _______ 
− 105 ρ

    e   − 10   5 ρz  ρ dρ )    
z=0.02

z=0.04

  

=  ∫ 
 0
  
  0.01

   −  10   −5  π( e   −2000ρ  −  e   −4000ρ  ) dρ

Figure 2.5 The total charge contained 
within the right circular cylinder may be 
obtained by evaluating Q =  ∫  vol   ! ρ  v  !dv.

z = 2 cm

z = 4 cm

ρ = 1 cm

ρʋ = –5e–105ρz µC/m3

y

x

z
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Finally,

 
Q

 
 = −  10   −10  π   (     e   −2000ρ  _____ − 2000   −    e   −4000ρ  _____ − 4000   )    

0
  

0.01

   
Q

 
 = −  10   −10  π  (    1 _ 2000   −   1 _ 4000   )    =   − π ___ 40   = 0.0785 pC

where pC indicates picocoulombs.

2.3.2  Electric Field Associated with a Volume 
Charge Distribution

Consider an incremental charge, ΔQ at r′ that represents a small portion of a larger 
charge volume of density ρv, which in general may vary with position. ΔQ lies within 
a small volume Δv, and is thus treated as a point charge, where ΔQ = ρv Δv as before.
The incremental contribution to the electric field intensity at r associated with this 
charge is written, using (10):

ΔE(r) =    ΔQ
 __________ 

4π ϵ0 |  r − r′ |  2
      r − r′ ______  |  r − r′ |     =   ρv Δv __________ 

4π ϵ0 |  r − r′ |  2
     r − r′ ______  |  r − r′ |  

The above gives the field contribution at r for the small volume of charge within the 
larger distribution. To find the total field at r, we sum the contributions at that point 
of all the charges in the distribution. This is done by first letting the volume element 
Δv approach zero. The effect of this is twofold: First, it provides essentially infinite 
spatial resolution (as the volume charge density may vary from point to point); sec-
ond, the summation becomes an integral over the charge volume:

E(r) =  ∫  vol       
ρv(r′) d v′

 __________ 
4π ϵ0 |  r − r′ |  2  

       r − r′ ______  |  r − r′ |    (15)

This is again a triple integral, and (except in Drill Problem 2.4) we will do our best 
to avoid actually performing the integration.

The significance of the various quantities under the integral sign of (15) might 
stand a little review. The vector r from the origin locates the field point where E is 
being determined, whereas the vector r′ extends from the origin to the source point 
where ρv(r′)dv′ is located. The scalar distance between the source point and the field 
point is   |   r − r′  |   , and the fraction (r − r′)/  |   r − r′  |    is a unit vector directed from source
point to field point. The variables of integration are x′, y′, and z′ in rectangular co-
ordinates.

D2.4. Calculate the total charge within each of the indicated volumes: (a) 0.1 ≤  
  |   x  |   ,   |   y  |   ,   |   z  |    ≤ 0.2:  ρ  v   =   1 _____ 

 x   3   y   3   z   3 
  ; (b) 0 ≤ ρ ≤ 0.1, 0 ≤ ϕ ≤ π, 2 ≤ z ≤ 4; ρv = ρ2z2 sin 

0.6ϕ; (c) universe: ρv = e−2r/r2.

Ans. (a) 0; (b) 1.018 mC; (c) 6.28 C
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2.4 FIELD OF A LINE CHARGE
Up to this point we have considered two types of charge distribution, the point charge and 
continuous charge distributed throughout a volume with a density ρv C/m3. We now con-
sider a filamentlike distribution of volume charge density, such as a charged conductor of 
very small radius. It is convenient to treat the charge as a line charge of density ρL C/m.

Consider a straight-line charge extending along the z axis in a cylindrical coor-
dinate system from −∞ to ∞, as shown in Figure 2.6. We will find the electric field 
intensity E at any and every point resulting from a uniform line charge density ρL.

2.4.1 Setting Up the Problem: The Importance of Symmetry

Symmetry should always be considered first in order to determine two specific fac-
tors: (1) with which coordinates the field does not vary, and (2) which components 
of the field are not present. The answers to these questions then tell us which compo-
nents are present and with which coordinates they do vary.

Referring to Figure 2.6, we realize that as we move around the line charge, varying 
ϕ while keeping ρ and z constant, the line charge appears the same from every angle. In 
other words, azimuthal symmetry is present, and no field component may vary with ϕ.

Again, if we maintain ρ and ϕ constant while moving up and down the line 
charge by changing z, the line charge still recedes into infinite distance in both direc-
tions and the problem is unchanged. This is axial symmetry and leads to fields that 
are not functions of z.

Figure 2.6 The contribution dE = dEρ aρ + dEz 
az to the electric field intensity produced by an 
element of charge dQ = ρL dz′ located a distance 
z′ from the origin. The linear charge density is 
uniform and extends along the entire z axis.

(0, 0, z' )

P

ρL

θ

x

y

z

dQ = ρL dz'

dEρ

dEz dE

r

r'

aR

R = r – r'
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If we maintain ϕ and z constant and vary ρ, the problem changes, and Coulomb’s 
law leads us to expect the field to become weaker as ρ increases. Hence, by a process 
of elimination we are led to the fact that the field varies only with ρ.

Now, which components are present? Each incremental length of line charge acts 
as a point charge and produces an incremental contribution to the electric field inten-
sity that is directed away from the bit of charge (assuming a positive line charge). No 
element of charge produces a ϕ component of electric intensity; Eϕ is zero. However, 
each element does produce an Eρ and an Ez component, but the contribution to Ez by 
elements of charge that are equal distances above and below the point at which we 
are determining the field will cancel. Therefore only an Eρ component is expected, 
and this will vary only with ρ. Now to find this component.

We choose a point P(0, y, 0) on the y axis at which to determine the field. This is a 
perfectly general point in view of the lack of variation of the field with ϕ and z. Applying 
(10) to find the incremental field at P due to the incremental charge dQ = ρLdz′, we have

d E =    ρL d z(r − r′)__________
4π ϵ0 |  r − r′ |  3  

where r′ = z′az and r = yay =  ρaρ. The replacement of y with ρ in the last equality 
arises from the symmetry, in that the field in the xy plane will vary only with distance 
from the origin, expressed as the more general ρ direction in cylindrical coordinates. 
We now have

r − r′ = ρ aρ − z′ az

and therefore,

d E =    
ρL d z′(ρ aρ − z′ az)  ______________  
4π ϵ0 ( ρ2 + z′2)3/2   

The differential field contributions to a point in the xy plane are now summed by 
integrating the preceding differential field over the infinite line charge:

 E  ρ   =   ∫ 
−∞

  
  ∞

      
ρL d z′(ρ aρ − z′ az)  ______________  
4π ϵ0 ( ρ2 + z′2)3/2   

At this point we note that the second term in the integral, involving z′az′, integrates to zero 
because it gives equal and opposite contributions that cancel each other as z′ changes sign 
at the origin. This is an example of a function that exhibits odd parity. This result demon-
strates mathematically what was already discussed, that the z contributions to the field 
from the symmetric charge will cancel out. The remaining part of the integral, involving 
aρ, is evaluated by integral tables or by a change of variable, z′ = ρ cot θ, leading to:

 E  ρ   =    ρ  L   ____ 4π  ϵ  0  
   ρ   (     1 __ 

 ρ   2 
      z′      _____ 
 √ 

_____
  ρ   2  +   z′2          
 )

−∞

∞

so that

 E  ρ   =   
 ρ  L  _____

2π  ϵ  0   ρ
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or finally,

 E =    ρ  L   _ 2π  ϵ  0   ρ
    a  ρ   (16)

We note that the field falls off inversely with the distance to the charged line, as compared 
with the point charge, where the field decreased with the square of the distance. Moving 
10 times as far from a point charge leads to a field only 1 percent the previous strength, 
but moving 10 times as far from a line charge only reduces the field to 10 percent of its 
former value. An analogy can be drawn with a source of illumination, for the light inten-
sity from a point source of light also falls off inversely as the square of the distance to the 
source. The field of an infinitely long fluorescent tube thus decays inversely as the first 
power of the radial distance to the tube, and we should expect the light intensity about a 
finite-length tube to obey this law near the tube. As our point recedes farther and farther 
from a finite-length tube, however, it eventually looks like a point source, and the field 
obeys the inverse-square relationship.

2.4.2 Field of an Off-Axis Line Charge

Before leaving this introductory look at the field of the infinite line charge, it should 
be recognized that not all line charges are located along the z axis. As an exam-
ple, consider an infinite line charge parallel to the z axis at x = 6, y = 8, shown in 
Figure 2.7. E is to be found at the general field point P(x, y, z).

Figure 2.7 A point P(x, y, z) is identified near an infinite 
uniform line charge located at x = 6, y = 8.

P(x, y, z)

(x, y, 0)
(6, 0, 0)

(6, 8, 0)

(0, 8, 0)

R

R
(6, 8, z)

ρL

x

y

z
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ρ  is replaced in (16) by the radial distance between the line charge and point,
P, R =  √ 

____________
   (x − 6 )   2  +  (y − 8 )   2   , and let aρ be aR. Thus,

E =    ρ  L    ______________   
2π  ϵ  0    √ 

____________
    (  x − 6 )     2  +   (  y − 8 )     2   
    a  R  

where

 a  R   =   R ___  |  R |     = 
(x − 6 )  a  x   + (y − 8 )  a  y    ____________  
 √ 

____________
   (x − 6 )   2  +  (y − 8 )   2   
  

Therefore,

E =    ρ  L   ____ 2π  ϵ  0  
     
 (  x − 6 )    a  x   +  (  y − 8 )    a  y    ____________  

  (  x − 6 )     2  +   (  y − 8 )     2 
  

We again note that the field is not a function of z.
In Section 2.6, we describe how fields may be sketched, and the field of the line 

charge is one example.

D2.5. Infinite uniform line charges of 5 nC/m lie along the (positive and neg-
ative) x and y axes in free space. Find E at: (a) PA(0, 0, 4); (b) PB(0, 3, 4).

Ans. (a) 45az V/m; (b) 10.8ay + 36.9az V/m

2.5 FIELD OF A SHEET OF CHARGE
Another basic charge configuration is the infinite sheet of charge having a uniform 
density of ρS C/m2. Such a charge distribution may often be used to approximate 
that found on the conductors of a strip transmission line or a parallel-plate capacitor. 
As will be seen in Chapter 5, static charge resides on conductor surfaces and not in 
their interiors; for this reason, ρS is commonly known as surface charge density. The 
charge-distribution family now is complete—point, line, surface, and volume, or Q, 
ρL, ρS, and ρv.

2.5.1 Symmetry

Consider an infinite sheet of charge in the yz plane and again be aware of symmetry 
(Figure 2.8). We observe first that the field cannot vary with y or with z, and that 
the y and z components arising from differential elements of charge symmetrically 
located with respect to the point at which we evaluate the field will cancel. Therefore 
only Ex is present, and, as will be demonstrated, will not vary in any direction. We 
are again faced with a choice of many methods by which to evaluate this component, 
and this time we use only one method and leave the others as exercises for a quiet 
Sunday afternoon.

hay28159_ch02_026-047.indd   39 25/11/17   11:07 am



E N G I N E E R I N G  E L E C T R O M AG N E T I C S40

2.5.2 The Sheet Charge as an Ensemble of Line Charges

The field of the infinite line charge (16) is implemented here by dividing the infinite 
sheet into differential-width strips. One such strip is shown in Figure 2.8. The line 
charge density, or charge per unit length, is ρL = ρS dy′, and the distance from this line 
charge to our general point P on the x axis is R =  √ 

______
  x   2  +  y   ́2   . The contribution to Ex at

P from this differential-width strip is then

d E  x   =    ρ  S   d  y′      ________  
2π  ϵ  0    √ 

______
  x   2  +  y   ́2   
   cos θ =    ρ  S   ____ 2π  ϵ  0  

     xd  y′      _____
 x   2  +  y   ́2

  

Adding the effects of all the strips,

 E  x   =    ρ  S   ___ 2  ϵ  0
  ∫

−∞

  ∞
      x d  y′      _____ 
 x   2  +   y   ′    2 

   =    ρ  S   ____ 2π  ϵ  0  
     tan   −1     y′     __ x   ]    

−∞

∞
=      ρ  S   ____

2π  ϵ  0  
  

If the point P were chosen on the negative x axis, then
 E  x   = −   

 ρ  S   ___
2  ϵ  0

for the field is always directed away from the positive charge. This difficulty in sign 
is usually overcome by specifying a unit vector aN, which is normal to the sheet and 
directed outward, or away from it. Then

 E =    ρ  S   _ 2  ϵ  0  
    a  N   (17)

This is a startling answer, for the field is constant in magnitude and direction. It is 
just as strong a million miles away from the sheet as it is right off the surface. Return-
ing to our light analogy, we see that a uniform source of light on the ceiling of a very 
large room leads to just as much illumination on a square foot on the floor as it does 

Figure 2.8 An infinite sheet of charge in the 
yz plane, a general point P on the x axis, and the 
differential-width line charge used as the element in 
determining the field at P by dE = ρSdy′aR/(2πϵ0R).

y

x

θ

z

dy'

y'

R =   x 2 + y'2
P(x, 0, 0)

ρS
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on a square foot a few inches below the ceiling. If you desire greater illumination 
on this subject, it will do you no good to hold the book closer to such a light source.

2.5.3 Capacitor Model

If a second infinite sheet of charge, having a negative charge density −ρS, is located 
in the plane x = a, the total field may be found by adding the contribution of each 
sheet. In the region x > a,

 E  +   =    ρ  S   ___ 2  ϵ  0  
    a  x      E  −   = −    ρ  S   ___ 2  ϵ  0  

    a  x    E =  E  +   +  E  −   = 0

and for x < 0,
 E  +   = −    ρ  S   ___ 2  ϵ  0  

    a  x      E  −   =    ρ  S   ___ 2  ϵ  0  
    a  x    E =  E  +   +  E  −   = 0

and when 0 < x < a,

 E  +   =    ρ  S   ___ 2  ϵ  0  
    a  x      E  −   =    ρ  S   ___ 2  ϵ  0  

    a  x  

and

 E =  E  +   +  E  −    =    ρ  S   _  ϵ  0      a  x   (18)

This is an important practical answer, for it is the field between the parallel plates of 
an air capacitor, provided the linear dimensions of the plates are very much greater 
than their separation and provided also that we are considering a point well removed 
from the edges. The field outside the capacitor, while not zero, as we found for the 
preceding ideal case, is usually negligible.

D2.6. Three infinite uniform sheets of charge are located in free space as 
follows: 3 nC/m2 at z = −4, 6 nC/m2 at z = 1, and −8 nC/m2 at z = 4. Find E at 
the point: (a) PA(2, 5, −5); (b) PB(4, 2, −3); (c) PC(−1, −5, 2); (d) PD(−2, 4, 5).

Ans. (a) −56.5az; (b) 283az; (c) 961az; (d) 56.5az all V/m

 2.6 STREAMLINES AND SKETCHES OF FIELDS
We now have vector equations for the electric field intensity resulting from several 
different charge configurations, and we have had little difficulty in interpreting the 
magnitude and direction of the field from the equations. Unfortunately, this simplicity 
cannot last much longer, for we have solved most of the simple cases and our new 
charge distributions must lead to more complicated expressions for the fields and more 
difficulty in visualizing the fields through the equations. However, it is true that one 
picture would be worth about a thousand words, if we just knew what picture to draw.

Consider the field about the line charge,

E =    ρ  L   _____ 2π  ϵ  0   ρ
    a  ρ  
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Figure 2.9a shows a cross-sectional view of the line charge and presents what might be 
our first effort at picturing the field—short line segments drawn here and there having 
lengths proportional to the magnitude of E and pointing in the direction of E. The fig-
ure fails to show the symmetry with respect to ϕ, so we try again in Figure 2.9b with a 
symmetrical location of the line segments. The real trouble now appears—the longest 
lines must be drawn in the most crowded region, and this also plagues us if we use 
line segments of equal length but of a thickness that is proportional to E (Figure 2.9c). 
Other schemes include drawing shorter lines to represent stronger fields (inherently 
misleading) and using intensity of color or different colors to represent stronger fields.

For the present, we will show only the direction of E by drawing continuous 
lines, which are everywhere tangent to E, from the charge. Figure 2.9d shows this 
compromise. A symmetrical distribution of lines (one every 45°) indicates azimuthal 
symmetry, and arrowheads are used to show direction.

These lines are usually called streamlines, although other terms such as flux 
lines and direction lines are also used. A small positive test charge placed at any 
point in this field and free to move would accelerate in the direction of the streamline 
passing through that point. If the field represented the velocity of a liquid or a gas 
(which, incidentally, would have to have a source at ρ = 0), small suspended particles 
in the liquid or gas would trace out the streamlines.

Figure 2.9 (a) One very poor sketch, (b) and (c) two fair sketches, and 
(d!) the usual form of a streamline sketch. In the last form, the arrows 
show the direction of the field at every point along the line, and the 
spacing of the lines is inversely proportional to the strength of the field.

(c) (d)

(a) (b)
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We will find out later that a bonus accompanies this streamline sketch, for the 
magnitude of the field can be shown to be inversely proportional to the spacing of 
the streamlines for some important special cases. The closer they are together, the 
stronger is the field. At that time we will also find an easier, more accurate method 
of making that type of streamline sketch.

If we tried to sketch the field of the point charge, the variation of the field into 
and away from the page would cause essentially insurmountable difficulties; for this 
reason sketching is usually limited to two-dimensional fields.

In the case of the two-dimensional field, we may arbitrarily set Ez = 0. The stream-
lines are thus confined to planes for which z is constant, and the sketch is the same for any 
such plane. Several streamlines are shown in Figure 2.10, and the Ex and Ey components 
are indicated at a general point. It is apparent from the geometry that

   
 E  y   _  E  x  

   =   dy_
dx

  (19)

A knowledge of the functional form of Ex and Ey (and the ability to solve the resultant 
differential equation) will enable us to obtain the equations of the streamlines.

As an illustration of this method, consider the field of the uniform line charge 
with ρL = 2πϵ0,

E =   1 __ ρ    a  ρ  
In rectangular coordinates,

E =   x ____ 
 x   2  +  y   2 

    a  x   +   y ____ 
 x   2  +  y   2 

    a  y  

Thus we form the differential equation

  dy __ 
dx

 =   
 E  y   __  E  x  

   =   y _ x     or    dy __ y   =   dx__
x 

Figure 2.10 The equation of a streamline is 
obtained by solving the differential equation  
Ey/Ex = dy/dx.

x

y

Ey

Ex
Δx

Δy

E
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Therefore,
ln y = ln x +  C  1     or   ln y = ln x + ln C

from which the equations of the streamlines are obtained,
y = Cx

If we want to find the equation of one particular streamline, say one passing through 
P(−2, 7, 10), we merely substitute the coordinates of that point into our equation and 
evaluate C. Here, 7 = C(−2), and C = −3.5, so y = −3.5x.

Each streamline is associated with a specific value of C, and the radial lines 
shown in Figure 2.9d are obtained when C = 0, 1, −1, and 1/C = 0.

The equations of streamlines may also be obtained directly in cylindrical or spheri-
cal coordinates. A spherical coordinate example will be examined in Section 4.7.

D2.7. Find the equation of the streamline that passes through the point P(1, 
4, −2) in the field 

E = (a)    − 8x ___ y    a  x   +   4  x   2  ___ 
 y   2 

    a  y  ; (b)  2  e   5x  [ y(5x + 1 )  a  x   + x  a  y   ] . 

Ans. (a) x2 + 2y2 = 33; (b) y2 = 15.7 + 0.4x − 0.08 ln(5x + 1)
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CHAPTER 2 PROBLEMS
2.1 Three point charges of equal magnitude q are located at x = −2, y = +2, 

and y = −  √ 
__

 2   . Find the coordinates of a fourth positive charge, also of
magnitude q, that will yield a zero net electric field at the origin. 

2.2 Point charges of 1 nC and −2 nC are located at (0, 0, 0) and (1, 1, 1), 
respectively, in free space. Determine the vector force acting on each charge.

2.3 Point charges of 50 nC each are located at A(1, 0, 0), B(−1, 0, 0), C(0, 1, 
0), and D(0, −1, 0) in free space. Find the total force on the charge at A. 

2.4 Eight identical point charges of Q C each are located at the corners of a 
cube of side length a, with one charge at the origin, and with the three 
nearest charges at (a, 0, 0), (0, a, 0), and (0, 0, a). Find an expression for 
the total vector force on the charge at P(a, a, a), assuming free space.
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2.5 A point charge of 3 nC is located at the point (1, 1, 1) in free space. What 
charge must be located at (1, 3, 2) to cause the y component of E to be zero 
at the origin? 

2.6  Two point charges of equal magnitude q are positioned at z = ±d/2. 
(a) Find the electric field everywhere on the z axis; (b) find the electric 
field everywhere on the xy plane.

2.7 Two point charges of equal magnitude but of opposite sign are positioned 
with charge +q at z = +d/2 and charge −q at z = −d/2.  The charges in 
this configuration form an electric dipole. (a) Find the electric field 
intensity E everywhere on the z axis. (b) Evaluate your part a result at the origin. 
(c) Find the electric field intensity everywhere on the xy plane, expressing your 
result as a function of radius ρ in cylindrical coordinates. (d) Evaluate your part 
c result at the origin. (e) Simplify your part c result for the case in which ρ >> d. 

2.8 A crude device for measuring charge consists of two small insulating spheres 
of radius a, one of which is fixed in position. The other is movable along the 
x axis and is subject to a restraining force kx, where k is a spring constant. 
The uncharged spheres are centered at x = 0 and x = d, the latter fixed. If the 
spheres are given equal and opposite charges of Q/C, obtain the expression 
by which Q may be found as a function of x. Determine the maximum charge 
that can be measured in terms of ϵ0, k, and d, and state the separation of the 
spheres then. What happens if a larger charge is applied?

2.9 A 100-nC point charge is located at A(−1, 1, 3) in free space. (a) Find the 
locus of all points P(x, y, z) at which Ex = 500 V/m. (b) Find y1 if P(0, y1, 
3) lies on that locus.

2.10 A configuration of point charges consists of a single charge of value −2q 
at the origin, and two charges of value +q at locations z = −d and +d. 
The charges as positioned form an electric quadrupole, equivalent to two 
dipoles of opposite orientation that are separated by distance d along the 
z axis. (a) Find the electric field intensity E everywhere in the xy plane, 
expressing your result as a function of cylindrical radius ρ. (b) Specialize 
your part a result for large distances, ρ >> d.

2.11 A charge Q0 located at the origin in free space produces a field for which Ez =  
1 kV/m at point P(−2, 1, −1). (a) Find Q0. Find E at M(1, 6, 5) in (b) rectangular  
coordinates; (c) cylindrical coordinates; (d) spherical coordinates. 

2.12 Electrons are in random motion in a fixed region in space. During any 1 µs 
interval, the probability of finding an electron in a subregion of volume 
10−15 m2 is 0.27. What volume charge density, appropriate for such time 
durations, should be assigned to that subregion?

2.13 A uniform volume charge density of 0.2 µC/m3 is present throughout the 
spherical shell extending from r = 3 cm to r = 5 cm. If ρv = 0 elsewhere, 
find (a) the total charge present throughout the shell, and (b) r1 if half the 
total charge is located in the region 3 cm < r < r1. 
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2.14 The electron beam in a certain cathode ray tube possesses cylindrical symmetry, 
and the charge density is represented by ρv = −0.1/(ρ2 + 10−8 ) pC/m3 for 0 < 
ρ < 3 × 10−4 m, and ρv = 0 for ρ > 3 × 10−4 m. (a) Find the total charge per 
meter along the length of the beam. (b) If the electron velocity is 5 × 107 m/s, 
and with one ampere defined as 1 C/s, find the beam current.

2.15 A spherical volume having a 2-µm radius contains a uniform volume 
charge density of 105 C/m3. (a) What total charge is enclosed in the 
spherical volume? (b) Now assume that a large region contains one of these 
little spheres at every corner of a cubical grid 3 mm on a side and that 
there is no charge between the spheres. What is the average volume charge 
density throughout this large region? 

2.16 Within a region of free space, charge density is given as  ρ  v   =    ρ  0   rcosθ ______ a    C/m   3 ,
where ρ0 and a are constants. Find the total charge lying within (a) the 
sphere, r ≤ a; (b) the cone, r ≤ a, 0 ≤ θ ≤ 0.1π; (c) the region, r ≤ a, 0 ≤ θ 
≤ 0.1π, 0 ≤ ϕ ≤ 0.2π.

2.17 A length d of line charge lies on the z axis in free space. The charge density 
on the line is ρL = +ρ0  C/m (0 < z < d/2) and ρL = −ρ0 C/m (−d/2 < z < 0)  
where ρ0 is a positive constant. (a) Find the electric field intensity E 
everywhere in the xy plane, expressing your result as a function of 
cylindrical radius ρ.  (b) Simplify your part a result for the case in which 
radius ρ >> d, and express this result in terms of charge q = ρ0 d/2. 

2.18 (a) Find E in the plane z = 0 that is produced by a uniform line charge, 
ρL, extending along the z axis over the range −L < z < L in a cylindrical 
coordinate system. (b) If the finite line charge is approximated by an 
infinite line charge (L → ∞), by what percentage is Eρ in error if ρ = 0.5L? 
(c) Repeat (b) with ρ = 0.1L.

2.19 A line having charge density ρ0 |z| C/m and of length ℓ is oriented along the z 
axis at −ℓ/2 < z < ℓ/2. (a) Find the electric field intensity E everywhere in the 
xy plane, expressing your result in cylindrical coordinates. (b) Evaluate your 
part a result in the limit as L approaches infinity.

2.20 A line charge of uniform charge density ρ0 C/m and of length ℓ is oriented 
along the z axis at −ℓ/2 < z < ℓ/2. (a) Find the electric field strength, E, in 
magnitude and direction at any position along the x axis. (b) With the given 
line charge in position, find the force acting on an identical line charge that 
is oriented along the x axis at ℓ/2 < x < 3ℓ/2.

2.21 A charged filament forms a circle of radius a in the xy plane with its center 
at the origin. The filament carries uniform line charge density +ρ0 C/m
for −π/2 < ϕ < π/2 and −ρ0 C/m for π/2 < ϕ < 3π/2. Find the electric field 
intensity E at the origin. 

2.22 Two identical uniform sheet charges with ρs = 100 nC/m2 are located in free 
space at z = ± 2.0 cm. What force per unit area does each sheet exert on the other?
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2.23 A disk of radius a in the xy plane carries surface charge of density ρs =
ρs0 /ρ  C/m2 where ρs0 is a  constant. Find the electric field intensity E 
everywhere on the z axis.

2.24 (a) Find the electric field on the z axis produced by an annular ring of 
uniform surface charge density ρs in free space. The ring occupies the 
region z = 0, a ≤ ρ ≤ b, 0 ≤ ϕ ≤ 2π in cylindrical coordinates. (b) From 
your part a result, obtain the field of an infinite uniform sheet charge by 
taking appropriate limits.

2.25 A disk of radius a in the xy plane carries surface charge of density 
ρs1 = +ρs0 /ρ  C/m2 for 0 < ϕ < π, and ρs2 = −ρs0 /ρ C/m2 for π < ϕ < 2π,
where ρs0 is a constant. (a) Find the electric field intensity E everywhere on 
the z axis. (b) Specialize your part a result for distances z >> a. 

2.26 (a) Find the electric field intensity on the z axis produced by a cone surface 
that carries charge density ρs(r) = ρ0 /r  C/m2 in free space. The cone has its 
vertex at the origin and occupies the region θ = α, 0 < r < a, and 0 < ϕ < 
2π in spherical coordinates. Differential area for a cone is given in spherical 
coordinates as da = r sin α dr dϕ. (b) Find the total charge on the cone. (c) 
Specialize your result of part a to the case in which α = 90°, at which the 
cone flattens to a disk in the xy plane. Compare this result to the answer 
to problem 2.23. (d) Show that your part a result becomes a point charge 
field when z >> a. (e) Show that your part a result becomes an inverse-z-
dependent E field when z << a.

2.27 Given the electric field E = (4x − 2y)ax − (2x + 4y)ay, find (a) the equation 
of the streamline that passes through the point P(2, 3, −4); (b) a unit vector 
specifying the direction of E at Q(3, −2, 5). 

2.28 An electric dipole (introduced in Problem 2.7, and discussed in detail 
in Section 4.7) consists of two point charges of equal and opposite 
magnitude ±q spaced by distance d. With the charges along the z axis at 
positions z = ±d/2 (with the positive charge at the positive z location), the 
electric field in spherical coordinates is given by E(r, θ) = [qd/(4πϵ0r3)]
[2 cosθ ar + sin θ aθ], where r >> d. Using rectangular coordinates, 
determine expressions for the vector force on a point charge of magnitude 
q (a) at (0, 0, z); (b) at (0, y, 0).

2.29 If E = 20e−5y (cos 5xax − sin 5xay), find (a) |E| at P(π/6, 0.1, 2); (b) a 
unit vector in the direction of E at P; (c) the equation of the direction line 
passing through P. 

2.30 For fields that do not vary with z in cylindrical coordinates, the equations 
of the streamlines are obtained by solving the differential equation Ep/Eϕ = 
dρ/(ρdϕ). Find the equation of the line passing through the point (2, 30°, 0) 
for the field E = ρ cos 2ϕ aρ − ρ sin 2ϕaϕ.
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