
Artificial Intelligence (AI)
“Uninformed Search Strategies”

Faculty of Computer and Information
Level three – Computer Science

Dr. Mustafa Al-Sayed

(1) Breadth-first search (BFS)
• Evaluation of BFS; Optimal, Complete, and Exponential time and space

o BFS is complete algorithm as every node is expected to be explored if no
solution in the shallowest levels

• Strategy of BFS; all the nodes are expanded at a given depth in the search tree
before any nodes at the next level are expanded (i.e., FIFO queue as a frontier).

BFS Example

Breadth-first search on a simple binary tree. At each stage, the node to be expanded next is
indicated by a marker.

• Suppose that root node generates b nodes at level#1, each of these nodes generate b
nodes (for a total of b2) at the level#2. Each of them generates b nodes (yielding b3)
at level#3, and so on.

• Suppose that solution is at depth d (i.e., level#d). In the worst case, the total number
of nodes generated is b + b2 + b3 + ・ ・ ・ + bd = O(bd) .

• Nodes at depth d would be expanded before the goal was detected. Therefore, the
time complexity would be O(bd+1).

• For space complexity, every node generated remains in memory. There will be
O(bd−1) nodes in the explored set and O(bd) nodes in the frontier.

Both time and space complexity of BFS is scary, why?
• In sum, both time and space complexity is an exponential complexity bound such as

O(bd) is scary, where d is solution depth and b is the branching factor. The following
table shows why?

• The memory requirements are a bigger problem for breadth-first search than is the
execution time. One might wait 13 days for a solution with search depth 12, but no
computer has the petabyte memory.

• If your problem has a solution at depth 16, then it will take 350 years for BFS. In general,
exponential-complexity search problems cannot be solved by uninformed methods for any
but the smallest instances.

(2) Uniform-cost search
• Evaluation of Uniform-cost:

oOptimal as it finds the smallest path cost
oComplete when step cost exceeds a specific small cost
o Exponential time and space complexity

• Strategy of Uniform-Cost search; when all step costs (cost of transition
from node to node) are equal, BFS is optimal as it always expands the
shallowest unexpanded nodes (i.e., nodes of the highest layers). Instead,
uniform-cost search:

1. Expands the node with the lowest path cost. This is done by storing the frontier
as a priority queue ordered by the path cost (i.e., ordering of the queue by path
cost)

2. Goal test is applied to a node when it is selected for expansion rather than
when it is first generated.

3. A test is added in case a better path is found to a node currently on the frontier.

Uniform-cost search (Cont.…..)

This algorithm is identical to the general graph search algorithm, except for the use of
a priority queue and the addition of an extra check in case a shorter path to a frontier

state is discovered

Uniform-cost search Example

• To get from Sibiu to Bucharest, successors of Sibiu are Rimnicu and Fagaras with
costs 80 and 99, respectively. The least-cost node, Rimnicu, is expanded next, adding
Pitesti with cost 80 + 97=177.

• Least-cost node is now Fagaras, so it is expanded, adding Bucharest with cost
99+211=310. Now a goal node has been generated, but uniform-cost search keeps
going, choosing Pitesti for expansion and adding a second path to Bucharest with cost
80+97+101= 278.

• Now the algorithm checks to see if this new path is better than the old one; it is, so the
old is discarded. Bucharest, now with g-cost 278, is selected for expansion and
solution is returned.

Complexity of Uniform-Cost search
• Uniform-cost search does not care about the number of steps, but

only about their total cost (guided by path costs rather than
depths) This algorithm will get stuck in an infinite loop if there is
zero-cost step  So completeness is guaranteed when the cost of
every step exceeds some small positive constant ε.

• Let C∗ be the cost of the optimal solution, and every step cost at least
ε  the algorithm’s worst-case time and space complexity is

𝑶𝑶 𝒃𝒃𝟏𝟏+ �𝑪𝑪∗ ∈

Where ⁄𝐶𝐶∗
∈ = number nodes of the optimal path which can be much

greater than d. When all step costs are equal, ⁄𝐶𝐶∗
∈ = d. When all step

costs are the same, uniform-cost search is similar to breadth-first
search

(3) Depth-first search (backtracking search) DFS
• Evaluation of DFS:

• non-optimal as it will stop in case of detecting any solution that may not be
the optimal one

• complete as it will may expand every node but in case of avoiding repeated
states as in the general graph algorithm instead of tree-algorithm

• Exponential time complexity & linear space complexity
• Strategy of DFS:

o It proceeds to the deepest level of the tree until nodes with no successors.
oThe expanded nodes are dropped from the frontier (LIFO queue).
o If no solution, it “backs up” to the next deepest node that still has

unexplored successors.
oAs an alternative to the GRAPH-SEARCH-style implementation, it is common

to implement depth-first search with a recursive function that calls itself on
each of its children in turn.

DFS Example

DFS on a binary tree. Unexplored region is shown in light gray. Explored nodes with no descendants (children)
in the frontier are removed from memory. Nodes at depth 3 have no successors and M is the only goal node.

Complexity of DFS
• As shown in the previous example, If node J were also a goal node, then

DFS would return it as a solution instead of C, which is the better
solution hence, depth-first search is not optimal.

• Graph-search version, which avoids repeated states and redundant paths,
is complete.

• DFS in the worst case generates O(bm) nodes, where m is the maximum
depth in the tree.

• DFS has no clear advantage over BFS except in case of space complexity.
DFS needs to store only a single path from the root to a leaf node that
requires storage of only O(bm) nodes.

(4) Depth-limited search (DLS)
• Strategy of DLS:

o Failure of DFS in infinite state spaces can be alleviated by supplying DFS with a
predetermined depth limit L (i.e., nodes at depth L are treated as leaves).

oDFS is a special case of depth-limited search with L=∞.

• Evaluation of DFS:
oDLS is incompleteness if we choose L < d (d is depth of the shallowest goal).
oDLS will be non-optimal if we choose L > d.
o Time complexity is O(bL) and Space complexity is O(bL).

Depth-limited search (DLS) Cont.…

• Note: DLS can terminate with two kinds of failure; the standard failure value
indicates no solution, and ; cutoff value indicates no solution within the depth limit.

(5) Iterative deepening depth-first search (IDS)
• Strategy of IDS

o IDS is used to finds the best depth limit.
oGradually increasing the limit—first 0, then 1, then 2, and so on—until a goal

is found. This will occur when the depth limit reaches d (depth of the
shallowest goal node).

o IDS combines the benefits of DFS and BFS.
 Like DFS, where space complexity O(bd)
 Like BFS, where the optimal solution is expected to be obtained

IDS algorithm, which repeatedly applies depth-limited search with increasing limits. It terminates
when a solution is found or if the depth-limited search returns failure, meaning that no solution exists.

IDS Example

Does IDS wasteful due to regeneration of state multiple times?
• IDS not too costly:

oNodes on bottom level (depth d), which represent the majority, are generated
once, those on the next-to-bottom level are generated twice, and so on, up to the
children of the root that are generated d times (one for each iteration).

o So total number of nodes generated in the worst case is

 Time complexity for IDS is the same as BFS with some extra cost. For example, if b = 10 and d = 5, the
numbers are

• In general, iterative deepening (IDS) is the preferred uninformed
search method when the search space is large and the depth of the
solution is not known.

(6) Bidirectional search
• Strategy:

oRun two simultaneous searches (i.e., one forward from the initial
state and the other backward from the goal) hoping that the two
searches meet in the middle.

oThe motivation is that bd/2 + bd/2 is much less than bd. Therefore
space and time complexity is O(bd/2).

Comparing uninformed search strategies

	Artificial Intelligence (AI) �“Uninformed Search Strategies”�Faculty of Computer and Information�Level three – Computer Science�
	(1) Breadth-first search (BFS)
	BFS Example
	Both time and space complexity of BFS is scary, why?
	(2) Uniform-cost search
	Uniform-cost search (Cont.…..)
	Uniform-cost search Example
	Complexity of Uniform-Cost search
	(3) Depth-first search (backtracking search) DFS
	DFS Example
	Complexity of DFS
	(4) Depth-limited search (DLS)
	Depth-limited search (DLS) Cont.…
	(5) Iterative deepening depth-first search (IDS)
	IDS Example
	Does IDS wasteful due to regeneration of state multiple times?
	(6) Bidirectional search
	Comparing uninformed search strategies	

