
Chapter 4

Context Free Grammar & Parse Tree

Context Free Grammar & Parse Tree

 Context Free Grammars Concepts

 Derivation

 Recursive Grammars

 Grammar Factoring

 Syntax-Directed Translation

 Parse Tree

 Deriving Strings

 Ambiguity

 Associativity of Operators

 Operator Precedence

Context Free Grammars Concepts

 A Context-free Grammar is utilized to describe
the syntactic structure of a language

 It is Characterized By:

1. A Set of Tokens or Terminal Symbols

2. A Set of Non-terminals

3. A Set of Production Rules having the form:

NT {T, NT}*

4. A Non-terminal Designated As

the Start Symbol

Context Free Grammar Concepts

list list + digit

list list - digit

list digit

digit 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

OR

list list + digit | list - digit | digit

Context Free Grammars Example

Context Free Grammars Concepts

Derivation

 A grammar derives strings by beginning with the
start symbol and repeatedly replacing the non
terminal by the right side of a production for that
non terminal.

 Derivations are either Left Most Derivation or
Right Most Derivations.

 Left (Right) most derivation is the process of
accepting the given input string by rewriting the
production rule with left (right) most non terminal
only.

Context Free Grammars Concepts

Derivation Example:

E E + E| E * E |-E |(E) | idGrammar :

Input: id + id * id

E E + E

id + E

id + E * E

id + b * E

id + id * id

E E + E

E + E * E

E + E * id

E + id * id

id + id * id

Derivation: Left Right

Context Free Grammars Concepts

Derivation Symbols

 Consider a non terminal A in the middle of a sequence of grammar
symbols, as in αAβ, where α and β are arbitrary strings of grammar
symbol.

 Suppose A γ is a production. Then, we write:

αA β => α γ β , if A derives γ in one step

α A β α γ β , if A derives γ in zero or more steps

α A β α γ β , if A derives γ in one or more steps

 If S α, where S is the start symbol of a grammar G, we say that α is
a sentential form of G

 If α contains only terminal symbols, then α is sentence.

 If α contains one or more non-terminal symbols, then it is just a
sentential form.

Context Free Grammars Concepts

Derivation Symbols Example:

E E + E| E * E |-E |(E) | id

Grammar :

1- E => -E

2- E –(E + E)

3- id + E * E is a sentential

4- id + id * id is a sentence

Context Free Grammars Concepts

A grammar is called a recursive grammar if it contains production

rules that expanding a non-terminal according to these rules can

lead to a string that includes the same non-terminal again.

Otherwise it is called a non-recursive grammar.

A grammar is left/ right-recursive if and only if there exists a non-

terminal symbol that can derive to a sentential form with itself as

the leftmost/ rightmost symbol. Like (AA / A A)

Direct recursion occurs when the definition can be satisfied with

only one substitution. It has the form: (AA | A)

indirect recursion occurs when the definition can be satisfied with

more than one substitution.

It has the form: (A B , BA γ) or

(A B, B γ A)

Recursive Grammars

Context Free Grammars Concepts

 In some situations, Left Recursion should be
removed.

 The basic idea is to rewrite the recursive grammar

AA| as A A', A' A' |

expr expr + term | expr - term | term

term 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

expr term rest

rest + term rest | - term rest |

term 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Example:

recursive

grammar

non-

recursive

grammar

Context Free Grammars Concepts

•When a production has more than one alternatives

with common prefixes, then it is necessary to make

right choice on production.

•This can be done through rewriting the production

until enough of the input has been seen.

Example:

Grammar Factoring

To perform left-factoring for the production, A α β | α γ,

we rewrite is as: A α A', A' β γ

Parse Tree

 A parse tree is a tree that shows how the start symbol

of a grammar derives a string in the language.

 More Formally, a Parse Tree for a CFG Has the

Following Properties:

 Root Is Labeled With the Start Symbol

 Leaf Node Is a Token or

 Interior Node Is a Non-Terminal

 If A x1x2…xn, Then A Is an Interior; x1x2…xn Are

Children of A and May Be Non-Terminals or Tokens

Deriving Strings Using Grammars

Using the grammar defined on the earlier slide, we

can derive the string: 9 - 5 + 2 as follows:

list list + digit

 list - digit + digit

 digit - digit + digit

 9 - digit + digit

 9 - 5 + digit

 9 - 5 + 2

P1 : list list + digit

P2 : list list - digit

P3 : list digit

P4 : digit 9

P4 : digit 5

P4 : digit 2

Deriving Strings Using Grammars

This derivation could also be represented via a Parse Tree

(parents on left, children on right)

list

digit

digit

list

digit

list

9

5

2-

+

list list + digit

 list - digit + digit

 digit - digit + digit

 9 - digit + digit

 9 - 5 + digit

 9 - 5 + 2

Ambiguity

string string

string string

string

+

2-

59

Grammar:

string string + string | string – string | 0 | 1 | …| 9

A grammar that generates two parse trees for the

same input is said to be ambiguous grammar.

stringstring

stringstring

string

-

9 +

5 2

Input: 9 – 5 + 2

Parse tree 1 Parse tree 2

Associativity of Operators

 To solve the problem of ambiguity, extra restrictions

such as associativity and precedence should be

added to obtain only one parse tree for the input

expression.

 Associativity of Operators

Associativity means that when the same operator

appears in the input stream, then which operator

occurrence should be applied first.

Associativity of Operators

For example, given the expression:

operand1 operator operand2 operator operand3

 the “operator” is left associative if it is applied

first to “operand1” and “operand2 “ and then to

“operand3”. Like (+, - , * , /)

 the “operator” is right associative, if it is applied

applied first to “operand2” and “operand3 “ and

then to “operand1”. Like (=, exponent)

Associativity of Operators

Left vs. Right

right

letter

letter

right

letter

right

c

b

a =

=

right letter = right | letter

letter a | b | c | …| z

list

digit

digit

list

digit

list

9

5

2-

+

list list + digit |

| list - digit | digit

digit 0 | 1 | 2 | …| 9

9 – 5 + 2 a = b + c

Associativity of Operators

 The language of arithmetic expressions with + -
 (ambiguous) grammar that does not enforce

associativity
string string + string | string – string | 0 | 1 | …| 9

 non-ambiguous grammar enforcing left
associativity (parse tree will grow to the left)

string string + digit | string - digit | digit

digit 0 | 1 | 2 | …| 9

 non-ambiguous grammar enforcing right
associativity (parse tree will grow to the right)

string digit + string | digit - string | digit

digit 0 | 1 | 2 | …| 9

Operator Precedence

Most programming languages have operator

precedence rules that state the order in which

operators are applied.

Operators precedence rules can be

incorporated directly into a Context Free

Grammar to obtain only one parse tree for the

input expression.

Ambiguity is avoided.

Operator Precedence

What about

9 – 5 + 2

9 + 5 * 2

(9 + 5) * 2 ?

Typically

()

* /
+ -

is precedence

order

expr expr + term | expr – term | term

term term * factor | term / factor | factor

factor digit | (expr)

digit 0 | 1 | 2 | 3 | … | 9

Precedence Achieved by:

expr & term for each precedence level

Rules for each are associate to the left

The End

