
Chapter 6

Semantic Analysis & Intermediate Code

Generation

Semantic Analysis & Intermediate Code Generation

 Semantic Analysis

 Syntax-Directed Definition

 Syntax-Directed Translation

 Translation Schemes

 Intermediate Code Generation

 Generating Abstract Stack Machine Code

 Intermediate Code Generation:
Three-address Code

Semantic Analysis

 The semantics of the language defines what its programs mean,
what each program does when it executes.

 Semantic Analyzer adds semantic information to the parse tree
(syntax directed translation), checks the source program for
semantic errors and collects information for the code generation.

 The parser constructs parse trees in the syntax analysis phase.
The parse tree constructed in that phase is generally of no use for
a compiler, as it does not carry any information of how to
evaluate the tree.

Semantic Analysis

 The productions of context-free grammar, which makes the rules
of the language, do not accommodate how to interpret them.

 For example, the production E  E + T, has no semantic rule
associated with it, and it cannot help in making any sense of the
production.

 Semantic analysis judges whether the syntax structure
constructed in the source program derives any meaning or not.

 For example, int a = “value”; should not issue an error in lexical
and syntax analysis phase, as it is lexically and structurally
correct, but it should generate a semantic error as the type of the
assignment differs. These rules are set by the grammar of the
language and evaluated in semantic analysis.

 Meaning of statements (semantic) can be achieved by Syntax-
Directed Definition and Translation Schemes.

Syntax-Directed Definition(1)

 Each Production Has a Set of Semantic Rules

 Each Grammar Symbol Has a Set of Attributes

 For the Following Example, String Attribute “t” is
Associated With Each Grammar Symbol

 Semantic Rules for expr define t as a “synthesized
attribute” i.e., the various copies of t obtain their
values from “children t’s”

For example, E → E + T { E.value = E.value + T.value }

expr  expr – term | expr + term | term

term 0 | 1 | 2 | 3 | … | 9

Syntax-Directed Definition (2)

 Each Production Rule of the CFG Has a Semantic Rule

 Semantic rules are then embedded in the parse tree for the
process of translation.

 A parse tree showing all the attribute values at each node is
called annotated parse tree.

Production Semantic Rule

expr  expr + term expr.t := expr.t || term.t || ‘+’

expr  expr – term expr.t := expr.t || term.t || ’-’

expr  term expr.t := term.t

term  0 term.t := ‘0’

term  1 term.t := ‘1’

…. ….

term  9 term.t := ‘9’

Semantic rules for postfix notation

Syntax-Directed Translation

expr.t =95-

expr.t =9

expr.t =95-2+

term.t =5

term.t =2

term.t =9

2+5-9

 The translation process starts at the root and recursively
visits the children of each node in left-to-right order.

 The semantic rules at a given node are evaluated once all
descendants of that node have been visited.

Translation of 9 – 5 + 2 to 95-2+

Translation Schemes

 Translation scheme contains embedded Semantic Actions
into the right sides of the productions.

 A translation scheme is like a syntax-directed definition
except the order of evaluation of the semantic rules is
explicitly shown.

term

term

termexpr

expr

expr

9

5

2-

+

{print(‘-’)}

{print(‘9’)}

{print(‘5’)}

{print(‘2’)}

{print(‘+’)}

Intermediate Code Generation

 Intermediate code is an abstract (machine independent)
code.

 It is generated from annotated parse tree or abstract
syntax tree, AST.

 It is very useful because of its simplicity and portability;
since it is machine independent and enables common
optimizations.

 It has many forms such as:

 Stack machine code.

 Three address code.

Generating Abstract Stack Machine Code

The front end of a compiler constructs an intermediate representation of

the source program from which the back end generates the target program.

One popular form of intermediate representation is code for an abstract

stack machine.

I will show you how code will be generated for it.

The properties of the machine

1. Instruction memory

2. Data memory

3. All arithmetic operations are performed on values on a stack

Abstract Stack Machine Code: Instructions

Instructions fall into three classes.

1. Integer arithmetic

2. Stack manipulation

3. Control flow

push 5

rvalue 2

+

rvalue 3

*

. . .

1

2

3

4

5

6

16

7

0

11

7

. . .

1

2

3

4

Instructions Stack Data

pc

t

o

p

Abstract Stack Machine Code: L-value and R-value

What is the difference between left and right side identifier?

L-value Vs. R-value of an identifier

I : = 5 ; L - Location

I : = I + 1 ; R – Contents

The right side specifies an integer value, while left side specifies

where the value is to be stored.

Usually,

r-values are what we think as values

l-values are locations.

Abstract Stack Machine Code: Stack manipulation

push v push v onto the stack

rvalue l push contents on data location l

lvalue l push address of data location l

pop throw away value on top of the stack

:= the r-value on top is placed in the l-value below

it and both are popped

copy push a copy of the top on the stack

Abstract Stack Machine Code:
Translation of Expressions

Day = (1461*y) mod 4 + (153*m +2) mod 5 + d

lvalue day

push 1461

rvalue y

*

push 4

mod

push 153

rvalue m

*

push 2

+

push 5

mod

+

rvalue d

+

:=

0

1

2

-3

. . .

1

2 day

3 y

4 m

5 d

Translation of Expressions (2)

2 2

1461

2

1461

1

2

1461

2

1461

4

2

1

2

1

153

Translation of Expressions (3)

2

1

153

2

2

1

306

2

1

306

2

2

1

308

2

1

308

5

2

1

3

2

4

Translation of Expressions (4)

2

4

-3

2

1

0

1

2

-3

. . .

1

2 day

3 y

4 m

5 d

Intermediate Code Generation:
Three-address Code

Intermediate code generator receives input from, semantic
analyzer, in the form of an annotated syntax tree.

That syntax tree then can be converted into a linear
representation.

For example: a = b + c * d; the intermediate code generator
will try to divide this expression into sub-expressions and
then generate the corresponding code.

r1 = c * d; r2 = b + r1; a = r2;

A three-address code has at most three address locations to
calculate the expression.

Intermediate Code Generation:
Three-address Code

Concerning the code segment given in chapter 2 :

COST = RATE * (START – FINISH) + 2 * RATE * (START –
FINISH) ;

, The BNF :
Statement  id = expr ;

and the grammar productions:

expr  expr + term | expr – term | term

term term * factor | term / factor | factor

factor  digit | id | (expr)

digit 0 | 1 | 2 | 3 | … | 9

Intermediate Code Generation:
Three-address Code

According to the operator precedence rules provided by

the given grammar the abstract syntax tree, AST, will be

as follows:

Intermediate Code Generation:
Three-address Code

The three-address code and the optimized code are

given below:

The End

